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Abstract

The magnetostatic interaction energy between two magnetic elements of arbitrary shape is presented as a convolution

between the cross-correlation of the particle shapes and the dipolar tensor field. A generalized dipole–dipole interaction

is derived, where the magnetic moments associated with the two particles interact through a magnetometric tensor field,

carrying all the shape information. Example computations are given in order to verify the correctness of the formalism.

The well-known result of the interaction between prisms, employed in most micromagnetic simulations, is correctly

retrieved. The numerical accuracy of the method is also compared to a simple analytical result. Finally, one additional

example computation, two interlaced interacting rings, is presented to show the generality of the formalism.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The calculation of the magnetostatic interaction
energy, Em; between multiple uniformly magne-
tized particles of arbitrary shape represents one of
the most difficult components of a typical micro-
magnetic computation. In fact, it requires the
evaluation of a six-fold integral for each pair of
magnetic elements, as each magnetic moment of
- see front matter r 2004 Elsevier B.V. All rights reserve
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the first element interacts with each moment of the
second (a first three-fold integration), and then all
the moments of the first particle must be con-
sidered (another three-fold integration). This must
then be repeated for each pair of magnetic
elements. For a review of the literature on the
topic of magnetostatic energy computations we
refer to Chapters 7 and 11 in Ref. [1]. The six-fold
integrations can be avoided in principle, by
reformulating the equations of micromagnetics in
terms of field Lagrangians [2], but this approach is
not commonly used in contemporary micromag-
netics software.
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Many micromagnetic simulation packages use
rectangular prisms to subdivide the volume of a
magnetic shape, and then employ pre-calculated
coefficients, based on the functions first derived by
Rhodes and Rowlands [3], to compute the pairwise
interactions between all prisms. When a different
shape is needed for the computations, then these
coefficients must be recomputed. For most shapes,
the integrals involved can not be solved analyti-
cally, so that numerical computations must be
used. Simulations of blocking effects and magne-
tostatic interactions in random particle arrays (i.e.,
particles not arranged on a periodic lattice) are
often carried out by truncating the long-range
interactions at an appropriate radius [4]. Ewald
summation schemes are also frequently used [5]. In
dilute dispersions of single domain Fe particles in
an insulating matrix, magnetostatic interactions
were shown to be dominant even at packing
fractions as low as 10% [5]. In such studies, the
actual particle shapes are not taken into account,
and all particles are assumed to behave as point
dipoles [6], an assumption that has been shown to
be inaccurate for small particle separations when
the actual particle shape is properly taken into
account [7]. Magnetostatic interactions can also be
computed indirectly by considering the demagne-
tizing field; in such an approach, the demagnetiz-
ing field at a point in space due to a magnetized
object is computed by dividing this object into
small (cubic) cells, and then summing over all cells.
This procedure is then repeated for all cells in a
second body, so that the interaction energy can be
computed [8].
It is the purpose of this Letter to introduce a

novel theoretical and computational approach
which reformulates the magnetostatic interaction
energy as a convolution product between a
function determined by the shape of the individual
particles, and the dipolar interaction tensor field.
The approach is very general, and permits evalua-
tion (mostly numerical, but in some cases also
analytical) of the shape–shape pair interaction
energy. We begin this Letter with an explicit
derivation of the new formalism, followed by a
series of example computations. We conclude with
the outline of a numerical algorithm for the
computation of the magnetostatic interaction
energy, with a final explicit example: two inter-
laced magnetized rings.
2. Theoretical model

The theoretical approach employs the concept
of the characteristic function or shape function,
DðrÞ; which is a discontinuous function equal to
unity inside the particle and zero outside. For a
particle with a uniform magnetization state, the
magnetization can be expressed as a vector field
MðrÞ ¼ M0m̂DðrÞ; where M0 is the saturation
magnetization and a hat indicates a unit vector.
It was shown in Ref. [9], that the Fourier trans-
form of the shape function, the so-called shape

amplitude DðkÞ; is a continuous function that can
be used to define the demagnetization tensor field
NabðkÞ ¼ DðkÞk̂

a
k̂
b
: We denote vector and tensor

components with Greek superscripts. k̂
a
¼ ka=jkj

is the direction cosine of the a component of k:
The real space representation, NabðrÞ; can be
obtained by a three-dimensional (3D) inverse
Fourier transformation. The shape amplitude is
hence central to the description of the magneto-
static behavior of a uniformly magnetized particle.
It was also shown, in Ref. [7], that the

demagnetization tensor field can be written as the
convolution between the shape function and the
dipolar tensor, DabðrÞ

NabðrÞ ¼ DðrÞ �F�1½k̂
a
k̂
b
� ¼ DðrÞ �DabðrÞ; (1)

where � represents the convolution product, and
F the Fourier transform operator. The dipolar
tensor is defined as

DabðrÞ 	
1

4pr5
½r2dab � 3rarb�; (2)

where r ¼ jrj; and dab is the identity matrix.
Examples of the computation of the demagnetiza-
tion tensor field using this approach were de-
scribed in Refs. [10,11].
Once the demagnetization tensor field (DTF) is

known, then the magnetostatic energy can be
computed by contracting the tensor with respect to
the magnetization unit vector, maNabðrÞmb (a
summation over repeated superscripts is implied),
and integrating over the complete volume of the
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particle. Since the DTF was defined in terms of the
dipolar tensor and the shape function, one could
suspect that there must be a similar way to express
the magnetostatic energy in terms of the same
quantities. In the following paragraphs we will
show how this can be accomplished.
It has been shown in Refs. [7,12] that the most

general expression for the magnetostatic energy
Em of a magnetic system can be written as

Em ¼
m0
16p3

Z
d3k

k2
jMðkÞ 
 k j2: (3)

If the magnetic system is a pair of uniformly
magnetized particles, each of them described by a
shape function DiðrÞ (i ¼ 1; 2Þ; a magnetization
saturation Mi; and a unit vector m̂i; we can express
the interaction part of Eq. (3) as

Em ¼
K̄d

4p3
R

Z
d3kD1ðkÞD

n

2ðkÞ

�

� ðm̂1 
 k̂Þðm̂2 
 k̂Þe
ik
q

�
; ð4Þ

where q 	 R1 � R2 is the relative position of the
two particles.
In this expression, R indicates the real part, and

the mean magnetostatic energy density is defined
as K̄d 	 1

2
m0M1M2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kd;1Kd;2

p
with Kd ;i ¼

1
2
m0M

2
i : The integral in this expression is an inverse

Fourier transform with respect to the relative
position vector q; so we find

Em ¼ 2K̄dma
1m

b
2R F�1

q D1ðkÞD
n

2ðkÞk̂
a
k̂
bh in o

(5)

From here on we will drop theR symbol, since it is
clear that the energy must always be a real
number. Using the convolution theorem and Eq.
(1), we have

F�1
q ½D1ðkÞD

n

2ðkÞk̂
a
k̂
b
�

¼ F�1
q ½D1ðkÞD

n

2ðkÞ� �F�1
q ½kakb

�

¼ CðqÞ �DabðqÞ: ð6Þ

In this expression we have introduced the function
CðrÞ; which is defined as the cross-correlation of
the two shape functions: CðrÞ ¼ D1ðrÞ � D2ð�rÞ 	

D1ðrÞ%D2ðrÞ; where we follow Bracewell [13] in
denoting the cross-correlation by a % (pentagram).
Combining all equations, we find as the
final expression for the magnetostatic interaction
energy

Emðq; m̂1; m̂2Þ ¼ 2K̄d ma
1½CðqÞ �DabðqÞ�m

b
2 : (7)

It is easy to show that this expression reduces to
the more familiar dipolar interaction energy in the
limit that individual particles become single
magnetic dipoles. The shape function for a point
dipole is the weighted Dirac delta function, VdðrÞ;
so that CðrÞ ¼ V 2dðrÞ � dðrÞ ¼ V 2dðrÞ; where we
have used the fact that dðrÞ is the identity func-
tion for the convolution product. Substitution in
Eq. (7) results in the standard dipolar energy
expression

EmðqÞ ¼ 2K̄dV 2 ma
1D

abðqÞm
b
2

¼ m0l1 : DðqÞ : l2

¼
m0
4p

l1 
 l2
r3

� 3
ðl1 
 qÞðl2 
 qÞ

r5

� �
ð8Þ

with the standard definition of the magnetic
moments li ¼ Mim̂iV ; and denoting as : the
tensor contraction operation.
If we now define the tensor field

NabðqÞ ¼
1

V1V2
CðqÞ �DabðqÞ (9)

then the interaction energy can be written as

Emðq; m̂1; m̂2Þ ¼ 2K̄dV 1V 2 ma
1N

abðqÞm
b
2

¼ m0 l1 : NðqÞ : l2; ð10Þ

which is strikingly similar to Eq. (8). We have thus
derived a generalized dipole–dipole interaction,
where instead of each single elementary magnetic
moment (spin) of particle 1 interacting with each
other spin of particle 2 through the simple dipolar
tensor, the whole magnetic moment associated to
particle 1 interacts with the whole magnetic
moment associated to particle 2 through a less
simple tensor, which includes all the shape-related
information. The advantage of the present form-
alism is dramatic: while the spin pair interaction is
then to be repeated and summed over each couple
of spins, with Eq. (10) the calculation is to be done
only once.
It is interesting to consider the relation between

the new tensor fieldNabðqÞ and the magnetometric
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(volume averaged) demagnetization factors. It has
been shown in Ref. [9] that the magnetometric
demagnetization factors can be expressed as

hNiab ¼
1

8p3V

Z
d3kjDðkÞj2k̂

a
k̂
b

(11)

while for particles with identical shape, Eq. (9) can
be written as

NabðqÞ ¼
1

8p3V 2

Z
d3kjDðkÞj2k̂

a
k̂
b
eik
q: (12)

It is then easy to see by comparing Eqs. (11) and
(12) that for particles with identical shape
VNabð0Þ ¼ hNiab: Because of this relation, we
propose to call NabðqÞ the magnetometric tensor

field. It is easy to verify that the trace ofN is equal
to the trace of D and vanishes for non-overlapping
particles.
ρR

C(x)

D
zz

(ρ-x)

C(x) D
zz

(ρ-x)

x-2R 2R0 ρ

Fig. 1. 1D schematic illustration of the convolution process of

Eq. (16) for two uniformly magnetized interacting cylinders

(axial magnetization direction). The curve labeled CðxÞ

represents the auto-correlation function of a cylinder with

radius R. When the cylinders are located at a distance r along
the x-axis, then the Dzzðr� xÞ component of the dipolar tensor

is centered at r ¼ x: The product of the two functions is shown
as a thick line, and is only non-zero in the range �2Rpxp2R:
The area under the curve represents the contribution to the

magnetostatic energy.
3. Example applications

Before we consider an example application of
the formalism, it is useful to recall briefly the
geometrical meaning of the cross-correlation
function: CðqÞ describes the volume that is
common to the two shapes, when they (partially
or completely) overlap, as a function of the relative
position q of the two shapes. Note that for non-
centrosymmetric shapes, a coordinate inversion
must be carried out before computation of the
cross- or auto-correlation. For simplicity, we will
only consider identical shapes in the remainder of
this section.
The auto-correlation function CðqÞ for three

basic shapes, prism, sphere and cylinder, com-
puted as F�1

q ½jDðkÞj2�; can be expressed as

Cðrx; ry;rzÞ ¼ ð2a � jrxjÞð2b � jryjÞð2c � jrzjÞ

(13)

for a prism of sides ð2a; 2b; 2cÞ in cartesian
coordinates and for jrxjo2a; jryjo2b; jrzjo2c;

Cðr; rzÞ ¼
2V

p
1�

jrzj

t


 �

� arccos
r
2R

� 

�

r
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r
2R

� 
2r" #
ð14Þ
for a cylinder of height t and radius R in a
polar (r; rz) coordinate system and for jrzjot;
0oro2R;

CðrÞ ¼
V

16

r
R
� 2

� 
2 r
R
þ 4

� 

(15)

for a sphere of radius R in a spherical coordinate
system and for 0oro2: All of the above functions
are zero outside the specified region.
To show in more detail how the energy is

computed in this approach, let us consider two
cylinders with vertical magnetization, displaced at
a distance r along the x-axis as sketched in Fig. 1.
The convolution product in Eq. (7) can be written
more explicitly as

Eðq; m̂1; m̂2Þ

¼ 2K̄dma
1m

b
2

Z
d3rCðrÞDabðq � rÞ: ð16Þ

Since the cylinders are axially magnetized, as
indicated by the arrows, the only component
of the dipolar tensor that contributes to the
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magnetostatic energy is

Dzzðr� xÞ ¼
1

4pjr� xj3
: (17)

This function is shown in the figure, together with
the auto-correlation CðxÞ evaluated from Eq. (14).
The dipolar component Dzzðr� xÞ is centered
around the position r ¼ x: The product of the
two functions, CðxÞDzzðr� xÞ; is shown as a
thicker line. The area under this curve represents
the contribution to the total magnetostatic energy.
This is obviously a simplified 1D case. In reality,
the magnetostatic energy is the integral of the
product of two 3D functions over the volume of
the auto-correlation function. The divergence of
the dipolar tensor component Dzzðr� xÞ for r ¼ x

does not represent a problem, since the point r ¼

x can never enter inside the range �2Rpxp2R as
the cylinders cannot physically overlap.
It is interesting to note that the expression for

the magnetostatic energy in Eq. (16) represents a
three-fold integration over a finite volume, namely
the volume where the auto-correlation function is
non-zero. The standard expression for the magne-
tostatic interaction energy of two interacting
particles, which requires a six-fold integration
over the two particle shapes, has been replaced
by six three-fold integrations over the volume of
the auto-correlation function, or, in the case of
particles with different shapes, over the volume of
the cross-correlation function. There are six
integrations, one for each of the components of
the symmetric dipolar tensor. This represents a
significant simplification of the magnetostatic
energy problem, since the numerical computation
of CðrÞ is effortless.
Let us now consider a simple example where we

can carry out the convolution in Eq. (16) explicitly:
two interacting uniformly magnetized spheres of
radius R located at a distance r along the z-axis
(i.e., q ¼ ð0; 0;rÞ). If the magnetizations of both
spheres are perpendicular to their separation, for
instance along the x-axis (i.e., m̂i ¼ ½1; 0; 0�), then
only one term survives in the tensor contraction of
Eq. (16):

Dxxðq � rÞ ¼
1

4p
x2 þ y2 þ ðr� zÞ2 � 3x2

½x2 þ y2 þ ðr� zÞ2�5=2
: (18)
The simple geometry allows for a direct integra-
tion of Eq. (16) in spherical coordinates

EðrÞ ¼
K̄d

2p

Z 1

0

r2 drCðrÞ

Z 1

�1

dx
Z 2p

0

df

�
1

ðr2 þ r2 � 2rrxÞ3=2
�

3r2ð1� x2Þcos2 f

ðr2 þ r2 � 2rrxÞ5=2

" #
;

ð19Þ

where CðrÞ is given in Eq. (15). The result is, as
expected

EðrÞ ¼
8pKdR6

9r3
¼

KdV 2

2pr3
¼

m0
4p

l1 
 l2
r3

(20)

coincident with the energy of two dipoles with
magnetic moments jlij ¼ MiV : It can also be
verified, by direct computation, that for non-
overlapping spheres (when r42R) the iden-
tity NabðqÞ ¼ DabðqÞ holds: the magnetometric
tensor field for two interacting spheres is the
dipolar tensor itself. The situation is strikingly
similar to the identity between the demagnetiz-
ing field of a uniformly magnetized sphere and
the dipole field, valid in the region outside
the sphere.
As a final analytical example, we consider now

the interaction between magnetized prisms. This
problem is fundamental in micromagnetics, and
the method presented here must reproduce cor-
rectly the known and widely employed results.
Considering two identical cubes with edge length
2a displaced by a vector q ¼ ½rx;ry;rz�; we have
for the tensor element Nzzðq̄Þ:

Nzzðq̄Þ ¼
1

32pa3

Z þ1

�1

dx̄

Z þ1

�1

dȳ

Z þ1

�1

dz̄

� ð1� jx̄jÞð1� jȳjÞð1� jz̄jÞ

�
ðr̄x � x̄Þ2 þ ðr̄y � ȳÞ2 � 2ðr̄z � z̄Þ2

½ðr̄x � x̄Þ2 þ ðr̄y � ȳÞ2 þ ðr̄z � z̄Þ2�5=2
; ð21Þ

where we have rescaled all distances by the cube
edge length (r̄ ¼ r=2a; q̄ ¼ q=2a). Analytical com-
putation of this three-fold integral is lengthy but



ARTICLE IN PRESS

M. Beleggia, M. De Graef / Journal of Magnetism and Magnetic Materials 285 (2005) L1–L10L6
not difficult and results in

Nzzðq̄Þ ¼
1

32pa3
½4Hðr̄x; r̄y; r̄zÞ

þ Hðr̄x;�1þ r̄y;�1þ r̄zÞ

� 2Hðr̄x; r̄y;�1þ r̄zÞ

þ Hðr̄x; 1þ r̄y;�1þ r̄zÞ

þ Hðr̄x;�1þ r̄y; 1þ r̄zÞ

� 2Hðr̄x; r̄y; 1þ r̄zÞ

þ Hðr̄x; 1þ r̄y; 1þ r̄zÞ

� 2Hðr̄x;�1þ r̄y; r̄zÞ

� 2Hðr̄x; 1þ r̄y; r̄zÞ�; ð22Þ

where

Hðx; y; zÞ 	 Kð1þ x; y; zÞ � 2Kðx; y; zÞ

þ Kð�1þ x; y; zÞ ð23Þ

and, with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Kðx; y; zÞ 	

r

6
ðr2 � 3z2Þ

þ xyz arctan
xy

zr

� 

� xy2 ln x þ rð Þ

þ
x

2
ðy2 þ z2Þarcsinh

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
 !

þ
y

2
ðz2 � x2Þarcsinh

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p


 �
: ð24Þ

Special cases, when one or more of the compo-
nents of q̄ vanishes, are readily derived from these
relations by considering the appropriate limits in
the inverse trigonometric and hyperbolic func-
tions. The explicit expression for the tensor
element Nzzðq̄Þ consists of 135 terms. The other
two diagonal tensor elements can be determined
by an appropriate permutation of the coordinates,
while for the off-diagonal elements of the tensor
another explicit integration similar to Eq. (21) has
to be computed. Detailed and accurate compar-
isons show that these results are in complete
agreement with the well-known expressions for
interacting prisms, used in most micromagnetics
codes (e.g. Refs. [3,14,15]).
4. Numerical approach

Numerical implementation of the expressions
derived in Section 2 can be done in two different
ways. If the cross-correlation function of the
particle shapes can be computed analytically
(Section 3 lists a few of these functions for
common simple shapes), then one could straight-
forwardly use a numerical integration scheme to
compute the integrals for the tensor elements
NabðqÞ:
Alternatively, if the particle shapes are too

complex for analytical computation of the
cross-correlation function, then the entire compu-
tation could be performed in Fourier space, as
follows:
�
 Define the shape functions DiðrÞ of the particles
on a discrete grid of N3 points; grid points inside
the particle are assigned a value of 1, others are
set to zero;
�
 Use a fast Fourier transform (FFT) routine to
compute the two shape amplitudes;
�
 Compute the 6 arrays k̂
a
k̂
b
(only 2 need to be

stored; the others can be obtained by index
permutations);
�
 Use the inverse FFT to compute the 6 compo-
nents of the symmetric tensor fieldNab for each
particle pair, using the expression

NabðqÞ ¼
1

V 1V 2
F�1

q ½D1ðkÞD
n

2ðkÞk̂
a
k̂
b
�; (25)
�
 Once the tensor fields are known, the magneto-
static energy of interacting particles can be
computed using Eq. (10).

As a test to evaluate the accuracy of the
proposed scheme, we consider again the same
two spheres of radius R analyzed in Section 3.
Calling now their displacement r ¼ 2R þ d; from
Eq. (20) we obtain directly the relevant magneto-
metric tensor component NzzðrÞ:

NzzðrÞ ¼
1

4pð2R þ dÞ3
(26)
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z
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Fig. 3. Schematic illustration of two identical rings with inner

radius R1; outer radius R2; and thickness t. The first ring is

centered in the origin, whereas the center of the second ring is

located at the point ½0; 1
2
ðR1 þ R2Þ; 0�:
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and from Eq. (10) the interaction energy

EðrÞ ¼ 2K̄dV 2NzzðrÞ

¼ K̄dV zz
eff with Vzz

eff ¼
8pR6

9ð2R þ dÞ3
: ð27Þ

V zz
eff is the effective volume to be multiplied with

the magnetostatic energy density to obtain the
magnetostatic interaction energy.
The effective volume factor is shown as a

continuous line in Fig. 2 for two spheres of radius
R ¼ 10 nm; at a distance ð20þ dÞnm from each
other. The filled circles represent the results from a
numerical simulation, using the method described
earlier in this section. The effective volume factor
is computed numerically from Eq. (25). The shape
amplitudes were computed on a cubic grid of 2563

nodes, with a grid spacing of 1 nm. The numerical
results are in agreement with the theoretical
expression, with a relative error of less than 1%.
As a second example, consider the magneto-

static interaction energy for a pair of interlaced
uniformly magnetized rings with rectangular cross
section, rotated with respect to each other as
0

100

200

300

400

Separation Distanced [nm] 

E
ff

ec
tiv

e 
V

ol
um

e 
Fa

ct
or

 [
nm

3 ]

d

R

8 π R6

9 (2R+d)
3

R = 10 nm

numerical D(r)

analytical D(k)

Μ Μ

0 5 10 15 20

Fig. 2. Comparison of the effective volume factor for two

interacting spheres with uniform magnetization along the z-

direction. The spheres have a radius of 10 nm, and are separated

by a distance r: The solid curve represents the analytical result,
whereas the symbols indicate numerical results using Eq. (25).

Solid circles were obtained starting from the Fourier space

expression for the shape amplitude DðkÞ; whereas open

diamonds were obtained starting from the real space shape

function DðrÞ:
shown schematically in Fig. 3. The shape ampli-
tude DðkÞ for such a ring can be expressed
analytically as

DðkÞ ¼
4p
kkz

½R2J1ðkR2Þ � R1J1ðkR1Þ� sinðdkzÞ;

(28)

where J1ðxÞ is the Bessel function of the first kind
and first order, and ðk; kzÞ are the cylindrical
components of the Fourier space frequency vector
k: Simulations were carried out on the same 2563

pixels grid, with R1 ¼ 10 nm;R2 ¼ 15 nm; and t ¼

2d ¼ 4 nm:
The grayscale plots in Fig. 4(a) show the

diagonal effective volume factors V aa
eff ðx; y; 0Þ:

The off-diagonal elements vanish in this plane z ¼

0: The figure-eight shape visible in all images
corresponds to position vectors q for which the
two rings overlap; the tensor elements are put
equal to zero in all such points. The grayscale
ranges from �45 nm3 (black) to þ24 nm3 (white).
Fig. 4(b) shows the effective volume factors in

the plane ðx; y; 32Þnm; which corresponds to the
case where the center of the ring with axis along
the x-direction is located in the plane z ¼ 32 nm.
There is then no overlap possible between the
shapes, so that the effective volume factors are
defined for all points ðx; yÞ: All six tensor elements
are now different from zero, and the grayscale
ranges from �18 nm3 (black) to þ9 nm3 (white).
Fig. 5 shows the diagonal effective volume

factors V aa
eff along the y-direction (a) and the
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Fig. 4. Effective volume factors for the rings shown in Fig. 3: (a) depicts the diagonal components for q in the ðx; y; 0Þ plane. The
intensities range from �45nm3 (black) to þ24nm3 (white). The figure-eight corresponds to the vectors q for which the rings overlap.

(b) Depicts all six tensor elements for the ðx; y; 32Þ plane, for which there is no possible overlap between the rings. The intensity range
for this case is from �18 nm3 (black) to þ9 nm3 (white).
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Fig. 5. Diagonal effective volume factors for the two rings as a function of translation distance along the y- (a) and x- (b) directions.

The gaps in the curves correspond to translation values for which the rings overlap.
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x-direction. The gaps in the curves correspond to
an overlap of the two ring volumes. Such
computations can be used as follows: consider
the case where the center of the second ring is
located at the point q ¼ ð0; 12:5; 0Þnm; i.e., inside
the horizontal ring (this corresponds to the
situation depicted in Fig. 3). The effective volume
factors (in nm3) for this geometry (computed
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numerically) are equal to:

V
ab
eff ¼

8:963 0:0 0:0

0:0 �17:98 0:0

0:0 0:0 8:963

0
B@

1
CA: (29)

The tensor is diagonal, and the diagonal elements
are proportional to ð1;�2; 1Þ; which is also the
structure of the dipolar tensor for this particular
choice of displacement q: Therefore, similarly as
for two dipoles, the minimum energy is reached
when the magnetizations are aligned with respect
to each other and with the displacement vector:
m̂1km̂2k � q̂: However, the exact value of the
energy when the ring magnetizations are aligned
in this fashion is a factor of 20 smaller than the
energy computed from the pure dipole model. This
is not surprising, given the close proximity and the
complex geometry of the interlocking rings. The
comparison between rings and dipoles has been
made by considering two dipoles located at the
same relative position q; having the same total
magnetic moment l ¼ M0Vm̂ as the rings and
substituting D in place of N in Eq. (10).
If the second ring center is located at the point

q ¼ ð20; 20; 32Þnm; then the effective volume
tensor is non-diagonal, and not simply propor-
tional to the dipolar tensor. This has an effect in
establishing both the value and the location of the
minimum energy state. For this geometry, the
tensor is

V
ab
eff ¼

1:753 �2:738 �5:539

�2:738 2:039 �4:653

�5:539 �4:653 �3:792

0
B@

1
CA:

Searching numerically for the minimum energy state,
allowing the magnetizations to orient freely in 3D,
we obtain that the two magnetizations are still
aligned along a direction which, however, differs
from q̂ by roughly 3�: The ring–ring energy is, in this
case, just 4% smaller than the dipole–dipole.
Restricting the search to in-plane magnetizations is,
however, a more physical situation. In fact, the
demagnetization factor hNizz for a ring having the
specified parameters (R2 ¼ 15 nm; R1 ¼ 10 nm;
t ¼ 4 nm) is 0.553, which is larger than 1

3
: This

implies that the magnetization will most likely be
confined in the ring plane (see Ref. [16]). A 2D in-
plane search for a minimum reveals that m̂1 forms an
angle of 36:5� with the x-axis, and m̂2 is at 7:80

� with
the z-axis. By comparison, the same search for
dipoles would result in a different pair of angles:
40:0� and 10:9�; with an associated 3% larger energy.
5. Conclusions

In this Letter, we have presented a novel
theoretical and numerical approach to the compu-
tation of the magnetostatic pair interaction energy
for uniformly magnetized shapes. A compact
expression has been derived for a general shape–-
shape interaction, where the energy is computed by
contracting a newly introduced magnetometric
tensor field N with respect to the magnetic
moments of the two bodies. The magnetometric
tensor field is defined as the convolution between
the cross-correlation function of the two shapes,
and the dipolar tensor field. We have given
examples of cross-correlation functions for a few
basic shapes, as well as a geometrical interpretation
for the convolution product that results in the
magnetometric tensor field. The tensor fieldN; and
its associated effective volume factors, were ex-
plicitly computed for two interacting spheres and
cubes. For the spheres we verified that the N
coincides with the dipolar tensor D; for the cubes
we re-obtained the expression for the cube–cube
interaction, which is widely employed in micro-
magnetic simulations. Finally, we sketched a
numerical algorithm for the computation of the
effective volume factors, followed by an example
where the interaction between interlaced magne-
tized rings has been investigated thoroughly. By
comparing the ring–ring and the dipole–dipole
interactions we have shown that shape effects can
change the location of the ground magnetic state in
the free-parameters space, and its associated energy.
The method presented in this Letter, provides a

unified way to deal with magnetic shapes. Perhaps
the most important aspect of the method is that it
cleanly separates the shape information (in the
form of the cross-correlation function) from the
dipolar field. This separation allows for a straight-
forward numerical implementation by means of
fast Fourier transforms.
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